Joint quantile regression with operator-valued kernelsΒΆ
An example to illustrate joint quantile regression with operator-valued kernels.
We compare quantile regression estimation with and without non-crossing constraints.
Out:
Creating dataset...
Fitting...
Default
Default leaning time: 0.0966 s
Default score 0.69466
Independent
Independent leaning time: 2.3363 s
Independent score 0.78161
Joint
Joint leaning time: 5.3037 s
Joint score 0.78496
Non-crossing
Non-crossing leaning time: 9.8599 s
Non-crossing score 0.78167
# Author: Maxime Sangnier <maxime.sangnier@gmail.com>
# License: MIT
# -*- coding: utf-8 -*-
import time
import numpy as np
import matplotlib.pyplot as plt
from operalib import Quantile, toy_data_quantile
def main():
"""Example of multiple quantile regression."""
print("Creating dataset...")
probs = np.linspace(0.1, 0.9, 5) # Quantile levels of interest
x_train, y_train, _ = toy_data_quantile(100, random_state=0)
x_test, y_test, z_test = toy_data_quantile(1000, probs=probs,
random_state=1)
print("Fitting...")
methods = {'Default': Quantile(),
'Joint':
Quantile(probs=probs, kernel='DGauss', lbda=1e-2, gamma=8.,
gamma_quantile=1e-2),
'Independent': Quantile(probs=probs, kernel='DGauss',
lbda=1e-2, gamma=8.,
gamma_quantile=np.inf),
'Non-crossing': Quantile(probs=probs, kernel='DGauss',
lbda=1e-2, gamma=8.,
gamma_quantile=np.inf, nc_const=True)}
# Fit on training data
for name, reg in sorted(methods.items()):
print(name)
start = time.time()
reg.fit(x_train, y_train)
print('%s leaning time: %.4f s' % (name, time.time() - start))
print('%s score %.5f' % (name, reg.score(x_test, y_test)))
# Plot the estimated conditional quantiles
plt.figure(figsize=(12, 7))
for i, method in enumerate(sorted(methods.keys())):
plt.subplot(1, 4, i + 1)
plt.plot(x_train, y_train, '.')
plt.gca().set_prop_cycle(None)
predictions = methods[method].predict(x_test)
if predictions.ndim < 2:
plt.plot(x_test, predictions, '-')
else:
for quantile in predictions:
plt.plot(x_test, quantile, '-')
plt.gca().set_prop_cycle(None)
for prob, quantile in zip(probs, z_test):
plt.plot(x_test, quantile, '--',
label="theoretical {0:0.2f}".format(prob))
plt.title(method)
plt.legend(fontsize=8)
plt.show()
if __name__ == '__main__':
main()
Total running time of the script: ( 0 minutes 19.419 seconds)